
A Comprehensive Database Solution for MUC's Used Car Operations 1

A Comprehensive Database 
Solution for MUC's Used Car 
Operations
Members
Sheikh Saad Abdullah (A00447871)
Naziya Tasnim (A00447506)
Mohak Shrivastava (A00445470)
Kazi Istiak (A00452666)

Introduction
The MUC (Motors Used Cars) project involves designing and implementing a 
comprehensive database system for a national company specializing in used 
cars. The database aims to efficiently manage customer information, vehicle 
data, parts inventory, supplier details, transaction records, and monthly 
expenses. This project is a group effort, requiring collaboration among team 
members to design a robust relational database schema and develop a web 
application that interacts with the database to perform various operations.



A Comprehensive Database Solution for MUC's Used Car Operations 2

Database Schema

The MUC database schema, as depicted in the image, is a well-structured 
relational model that includes several tables representing different entities. 
These tables are: Customer, Car, Transaction, Listed_Car, 
Car_Purchase_History, Supplier, Order, Part, Order_Part, Monthly_Expense, and 
Rent. Each table has its own primary keys, which are unique identifiers for the 
records in the table. The relationships between these tables are established 
through foreign keys, which are fields in a table that match the primary key of 
another table. This schema provides a robust framework for managing and 
manipulating data in the MUC system, ensuring data integrity and consistency. 
It allows for efficient data retrieval and updates, making it a vital component of 
the system’s overall performance and reliability.



A Comprehensive Database Solution for MUC's Used Car Operations 3

Web Application Structure:
1. Main Files : 

HTML → Within this category we have 5 files 

budget.html → this HTML code is a template for a web page that 
displays a budget for a certain number of years, with the budget 
adjusted for inflation.

error.html → his HTML code is a template for a basic error page that 
informs the user about an error that occurred during their request.

expenses.html → this HTML code is a template for a web page that 
displays expenses for a range of years, with the expenses for each 
year shown in a table.

index.html → This HTML code provides a basic user interface for 
interacting with a database, allowing users to perform operations 
such as showing a table, adding a supplier, summarizing annual 
expenses for parts, and projecting a budget based on the number of 
years and inflation rate.

table.html → this HTML code is a template for displaying a table 
with dynamic content, where you can specify the table name, 
column headers, and table data to be displayed. 

CSS → The HTML code includes a link to an external CSS file with the 
URL https://unpkg.com/mvp.css . This means that the styles for the table 
and other elements on the page are defined in the mvp.css  file, which is 
hosted on the unpkg CDN. [1]

Python → we have 3 main python files that we need.

__main__.py → This Python script is a command-line application that 
serves as an entry point for a web application. It uses argparse to 
parse command-line arguments and getpass to securely prompt for 
a MySQL password.

app.py → This Python code defines a factory function that returns a 
Flask web application with several routes for interacting with a 
MySQL database by adding suppliers, viewing expenses, projecting 
budgets and displaying tables



A Comprehensive Database Solution for MUC's Used Car Operations 4

db.py → This Python code defines a context manager class Database  
for handling MySQL database connections.  It ensures that 
connections are properly established and closed, and transactions 
are committed or rolled back as needed, while also handling any 
exceptions that may occur.

DButils → files for the database interaction

j2sql_parts.sh → The script defines variables user , pass , and db  to 
store the MongoDB and MySQL database credentials. Imports data 
from a JSON file ( parts_100.json ) into a MongoDB database. Exports 
data from the MongoDB collection ( parts ) to a CSV file ( parts.csv ). 
mysql : Imports data from the CSV file ( parts.csv ) into a MySQL 
database ( $db ) and table ( parts ). The cat parts.csv | tr "," "\t" > 
parts.tsv  command converts the CSV file ( parts.csv ) to a tab-
separated values (TSV) file ( parts.tsv ). The load data local infile 
'parts.tsv' into table parts  command loads data from the TSV file 
( parts.tsv ) into the MySQL parts  table.

j2sql_supp+order.sh → This Bash script performs several operations 
related to creating tables in a MySQL database, converting JSON 
data to TSV files, and loading the data into the MySQL database.

j2tsv_supp+order.py → This Python script converts JSON data from 
two files (suppliers and orders) into tab-separated values (TSV) 
files. 

make_tables.sql → This SQL code defines the schema for four 
tables: suppliers , suppliers_telephone , orders , and order_parts , along 
with their respective columns and relationships.

orders_4000.json → JSON document containing a list of objects, 
each representing an order.

parts_100.json → JSON document containing a list of objects, each 
representing an item.

parts_table.sql → SQL statement that creates a table named parts  if 
it does not already exist.

http://order.sh/
http://order.py/


A Comprehensive Database Solution for MUC's Used Car Operations 5

2. Database Interaction : 

Web Interface (HTML, CSS, JS):

You have several HTML files ( index.html , error.html , table.html , 
expenses.html , budget.html ) that define the structure of your web 
interface.

CSS ( mvp.css ) is used for styling the HTML elements.

Flask Application ( app.py ):

This file defines your Flask application and its routes.

Each route ( / , /table , /supplier , /expenses , /budget ) corresponds 
to a different functionality in your web application.

The functions defined for each route handle the request, interact 
with the database, and render the appropriate HTML templates.

Database Interaction ( db.py  and app.py ):

The db.py  file defines a Database  class that serves as a context 
manager for handling database connections.

In app.py , the functions for each route use this Database  class to 
interact with the MySQL database.

SQL queries are executed to retrieve data (e.g., table 
information, expenses) and insert data (e.g., add a supplier).

Database Setup ( make_tables.sql ):

This file contains SQL statements to create tables in the MySQL 
database ( suppliers , suppliers_telephone , orders , order_parts , parts ).

Data Import ( import_data.sh ):

This shell script is used to import data into the MySQL database.

It uses mongoimport  to import data from JSON files into MongoDB 
and then exports it to CSV files.

Finally, it loads the CSV files into the MySQL database.

Data Conversion ( j2tsv_supp+order.py ):

This Python script converts JSON data into TSV format for suppliers  
and orders .



A Comprehensive Database Solution for MUC's Used Car Operations 6

Conclusion
In conclusion, the project demonstrates the use of web development 
technologies (Flask, HTML, CSS), database management (MySQL, 
MongoDB), and scripting (Python, Bash) to create a functional web 
application for managing a database. It showcases how different 
components can work together to build a robust system for handling data 
and providing useful functionalities to users.

References
[1]  https://unpkg.com/mvp.css@1.14.0/mvp.css ( /* MVP.css v1.14 - 
https://github.com/andybrewer/mvp */  )

https://unpkg.com/mvp.css@1.14.0/mvp.css

